Section 1.7 Solving Quadratic Equations

An equation that <u>can</u> be written in the form $ax^2 + bx + c = 0$ is a quadratic equation. In this section we will learn strategies for solving any quadratic equation.

Solve:
$$x^2 = 16$$

$$x = \pm 4$$

Solve:
$$(2x+3)^2 = 5$$

 $2x+3 = \sqrt{5}$ or $2x+3 = -\sqrt{5}$
 $x = \sqrt{5} - 3$ or $x = -\sqrt{5} - 3$

Extracting Square Roots.

When possible, isolate a perfect square term by setting it equal to a constant and then simplify by setting the quantity that is squared equal to the positive and negative square root of the other side.

Solve:
$$2x^2 = x + 6$$

 $2x^2 - x - 6 = 0$
 $(2x + 3)(x - 2) = 0$
 $x = -\frac{3}{2}$ or $x = 2$

Solve:
$$(x + 4)^2 = 13x + 10$$

 $x^2 + 8x + 16 = 13x + 10$
 $x^2 - 5x + 6 = 0$
 $(x-3)(x-2) = 0$
 $x = 3$ or $x = 2$

The Zero Factor Property and Factoring.

When possible, set the quadratic equal to zero and then factor the quadratic. Set each factor equal to zero and solve.

Solve:
$$2x^2 + 3x = 5$$

 $2x^2 + 3x - 3 = 0$
 $(2x + 5)(x - 1) = 0$
 $x = -\frac{5}{2}$ $x = 1$

Solve:
$$(x-1)(x+2) = 4x(x+2)$$

 $x^2 + x + 2x - 2 = 4x^2 + 8x$
 $x^2 + x - 2 = 4x^2 + 8x$
 $-3x^2 - 7x - 2 = 0$
 $3x^2 + 7x + 2 = 0$
 $(3x + 1)(x + 2)$

Quadratic Formula.

Write the quadratic in general form $ax^2 + bx + c = 0$ Then plug a, b, and c into the formula below and simplify.

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

f